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This paper develops a theory of continuum damage mechanics for anisotropic solids on the 

basis of both the strain energy equivalence principle and the equivalent (fictitious) line crack 

damage modeling. The strain energy equivalence principle is used to develop the effective 

continuum elastic properties of a damaged solid in terms of the undamaged anisotropic elastic 

properties and a scalar damage variable. The equivalent line crack representation of local 

damage provides a means by which the effective direction of damage propagation can be 

identified from the local stresses and strains that are available in the course of continuum 

damage analysis. A scalar damage variable is defined as the effective volume fraction of a 

damaged zone associated with an equivalent line crack. Finally, an iterative numerical approach 

to continuum damage analysis is introduced. 
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I. I n t r o d u c t i o n  

A material failure process is often assumed to 

involve general degradation of elastic properties 

due to the highly localized nucleation and growth 

of microdefects (i. e., microcracks and mi- 

crovoid,;) and their ultimate coalescence into 

macrodefects. The process and result of these 

irreversible, energy dissipating, microstructural 

rearrangements are often called damage. Exten- 

sive treatments of continuum damage mechanics 

can be found in the books by Kachanov (1986), 

Lemaitre (1992), and Krajcinovic (1996). 

Because of the complex nature of damage, there 

is no general agreement regarding the definition 

of damage variable(s) .  As Krajcinovic and Mas- 

tilovic (1995) discussed, selection of a damage 

variable is largely a matter of taste and conve- 

nience, and often has no obvious physical basis. 

Despite the non-uniqueness of damage variable 

definitions, there has been extensive research on 

continuum damage mechanics, focusing on two 
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major subjects: the constitutive equations for 

damaged materials, and damage evolution laws. 

Current theories of  continuum damage mechanics 

may be classified into four categories (Lee et al., 

1997) on the basis of: a) the type of elastic 

behavior of the damaged material; and b) the 

scalar or tensor nature of the damage variables 

and evolution equations. To the author's knowl- 

edge, most theories of continuum damage 

mechanics have been developed for initially 

isotropic solids, and the continuum damage the- 

ory by Lee et al. (1997) (hereafter referred to as, 

Lee's damage theory or LDT) is certainly the first 

that permits anisotropic behavior of the damaged 

isotropic material, while using a scalar damage 

variable. Since this paper is the extension of LDT 

to anisotropic solids, a brief review on LDT will 

be given in what follows. 

LDT is based on both the principle of strain 
energy equivalence and the concept of equivalent 

fictitious microcrack representation of local dam- 

age. In this context, the strain energy equivalence 

principle (SEEP) means that a material volume 

cell (MVC) of the damaged material containing 

local damage and its equivalent continuum model 

(ECM) should contain equal strain energy when 
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they are subject to identical global displacements 

on their boundaries. In LDT, SEEP was used to 

develop the effective continuum elastic properties 

of a damaged solid in terms of the undamaged 

isotropic elastic properties as well as a new defini- 

tion of scalar damage variable. One should note 

that, since a damaged MVC contains a single 

microcrack, Lee's homogenization approach dif- 

fers substantially from the so called self-consis- 

tent method (e. g., Budiansky and O'Connell,  

1976), in which a representative volume element 

is assumed to contain a large number of micro- 

cracks, the statistical distribution of which is 

known. A single scalar damage variable, D, was 

defined as the effective volume fraction of a 

damaged zone associated with an equivalent 

microcrack. This definition of the damage vari- 

able was consistently used to develop a consistent 

damage evolution equation, in conjunction with 

Paris's crack growth law (Paris and Erdogan, 

1963) commonly used in fracture mechanics. 

In LDT, as local damage can be characterized 

by its current geometry, growth direction, and 

progress of evolution, it was modeled as an equiv- 

alent fictitious elliptical microcrack. Thus the 

aspect ratio and orientation of an equivalent 

elliptical microcrack may approximately repre- 

sent the current geometry and growth direction of 

local damage. Since the strain energy for a 

cracked solid with an elliptical crack is available 

from fracture mechanics (Sih and Liebowitz, 

1967), for both plane problems and three-dimen- 

sional problems, the equivalent microcrack was 

considered as a construct which relates some 

general damage to effective continuum elastic 

properties of a damaged isotropic solid on the 

basis of SEEP. We also benefit from the equiva- 

lent microcrack representation, in that the effec- 

tive characteristics of local damage can be 

identified from local stresses and strains available 

in the course of damage analysis. As noted out by 

Lemaitre(1986), a crack edge may be considered 

as a local process zone in which damage increases 

until complete local failure of material occurs. 

This local approach may be considered as a 

continuous version of crack propagation. The 

combination of representing local damage as an 

effective elliptical microcrack, a consistent dam- 

age evolution equation, and the determination of 

effective continuum elastic properties (into which 

the local damage is smeared smoothly) by using 

SEEP may yield a simple, yet powerful new local 

approach to crack propagation analysis. 

As mentioned previously, most current theories 

of continuum damage mechanics including LDT 

have been developed for initially isotropic solids. 

However, composite materials are increasingly 

being used for structural applications where high 

strength-to-weight and stiffness-to-weight ratios 

are required. Composite materials in general 

show anisotropic behavior. Thus, the purpose of 

this paper is to develop a continuum damage 

mechanics for anisotropic solids, by extending 

LDT previously developed for isotropic solids. 

2. Modeling of Local Damages 

In the development of an equivalent continuum 

model of damaged anisotropic solids, the princi- 

ples and modeling procedure introduced in LDT 

will be used in this paper. Figure 1 shows the 

general features of the continuum damage 

mechanics for anisotropic solids developed in this 

paper. 

Consider a damaged MVC that contains a 

single microcrack, i. e., local damage. As shown 

in Fig. 1, a MVC will be modeled as an ECM by 

determining its effective continuum elastic prop- 

erties on the basis of SEEP. First assume that 

damaged MVC and ECM take identical global 

displacements on their boundaries at the charac- 

teristic radius of R (Kassir and Sih, 1967; Lee et 

al., 1997). This implies that the macro-behavior 

represented by ECM is the same as that of the 

damaged solid. Secondly the characteristic size 

(2a) of local damage is assumed to be relatively 

small compared to the characteristic size (R) of 

MVC. This assumption is appropriate in that the 

effects of neighboring cracks decay rapidly with 

distance (Rice, 1968) and the complete local 

failure of solid generally occurs far before the 

damage variable reaches its maximum value that 

implies absence of material (Lemaitre, 1985; 

Krajcinovic, 1989). Hence, local damage within 
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(a) A local damage within a material (b) Equivalent fictitious line (c) Effective continuum model (ECM) 
volume cell (MVC) crack modeling of local representation based on strain energy 

damage equivalence principle (SEEP) 
[---'zl~ Damage modeling ~ l l  Damage Identification 

Fig. 1 General features of the present theory of continuum damage mechanics 

each damaged MVC may be approximated as that 

in an infinite solid. Furthermore, if needed, the 

stresses on the boundary of the damaged MVC 

may be replaced by the corresponding strains 

obtained from the stress-strain relations of the 

undamaged solid. Accordingly the crack energies 

by Sih and Liebowitz (1967), originally derived 

in terms of the stresses at infinity, can be used to 

determine the effective continuum elastic prop- 

erties of ECM. 

As shown in Fig. 1, SEEP may provide the 

effective continuum elastic properties of ECM by 

equating the strain energy Va contained in a 

damaged MVC to the strain energy Veq in an 

ECM. That is, 

V~,q(S-;~)= V~(S, D ; o) (la) 
o r  

V,,q(C;~) = V~(C, D ; ~) (lb) 

where S and C represent the elastic compliance 

and stiffness, respectively, for the undamaged 

state of three-dimensional anisotropic solids, S- 

and C represent the effective continuum elastic 

compliance and stiffness for the damaged state. In 

the preceding equations, D represents the scalar 

damage variable. Equation ( la)  may be used 

when stresses are specified on the boundaries of 

the damaged MVC and ECM, while Eq. ( lb)  is 

used when the corresponding strains are specified 

on the same boundaries. The constitutive equa- 

tions for coupled elasticity and damage may be 

obtained by simply replacing the undamaged 

elastic properties by the effective continuum elas- 

tic properties for the damaged state. 

The strain energy Vd contained in a damaged 

MVC may be available from fracture mechanics 

or, alternatively, conventional stress analysis for 

certain crack problems. Most fracture surfaces can 

be considered as the continual propagation and 

coalescence of thin f i lm-like microcracks. Thus it 

may be pertinent to represent local damage as a 

line through-crack (simply, line crack),  rather 

than an elliptical through-crack, for plane prob- 

lems. Thus, in this paper, discussion will be 

confined to anisotropic plane problems with line 

cracks. The present study can be readily general- 

ized to other crack problems including three 

-dimensional  problems. 

2.1 Effective continuum elastic compliance 
and scalar damage variable 

Consider a two-dimensional  anisotropic solid 

lying in the 1-2 plane. For damaged states, the 

line crack is assumed to be aligned in the direc- 

tion "1", as illustrated in Fig. 2. 3-'he state of 

generalized plane stress will be assumed and the 

stress-strain relation for an undamaged solid may 

be written in terms of the (undamaged) 

anisotropic elastic compliance Si~(i, j =  1, 2, 6) 

a s  

mz --[S,2 S22 S26]Id2 ~ or {e}=[S]{d} (2) 

while, for the ECM of damaged solid, it is written 

in terms of the damaged (or effective continuum) 

elastic compliance S-,~(i, j = l ,  2, 6) as 
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{ ~'1 / [~__--11 S12 / 
s261/ol or {e}=[ S-]{a}(3) 

~6J [S lo  S26 So6][o6J 

The effective continuum elastic compliance S-u is 

to be determined, by using SEEP, in terms of the 

undamaged elastic compliance So and a single 

scalar damage variable D that is defined in the 

following. In Eqs. (2) and (3), the contracted 

notations for stresses and stains have been used 

for plane problems, t e., 0,=611, 0"2, =022, 06 

= ri2, ~ ' I=~II ,  ~2=~722, and ~6= )*12" 
The components of  elastic compliance can be 

represented in terms of engineering constants (t  

e., Young's moduli, shear moduli, and Poisson's 

ratios) (Lekhnitskii, 1963). They are, for 

anisotropic solids: 

1 1 1 

u,2 $16= Ut6 5'26= ~26 (4a) 
& 2 =  E1 ' G,2'  G12 

for orthotropic solids: 

1 1 1 1,/12 
SII= E , '  S==E-22' & 6 = ~  ' & 2 =  E I '  

S,6=0,  $26=0 (4b) 

and, for isotropic solids: 

1 1 2 ( l + u )  
S I , = S = = ~ ,  $66 G E ' 

S,2= /~., $16=0, $26=0 (4c) 

Consider an undamaged  MVC of anisotropic 

solid, which is subjected to boundary stresses 0 at 

the characteristic radius of R. The strain energy 

contained in the undamaged MVC may be written 

in the form (Sih and Liebowitz, 1967) 

Vo=2erRqaKE S ] {~} (5) 

Similarly, the strain energy stored in an ECM of 

damaged  anisotropic solid subjected to the same 

boundary stresses may be written in terms of the 

effective continuum elastic compliance S-o as 

Veq =17/'R2{O} T[ S-] {0} (6) 

A damaged solid may not store as much strain 

energy under a given deformation as an un- 

damaged solid because of the degradation of 

elastic moduli. The change of strain energy stor- 

age capacity of a two-dimensional  anisotropic 

solid due to the presence of a line crack is 

required to derive the effective continuum elastic 

compliance Su on the basis of SEEP. The strain 

energy released in forming a crack is often called 

the crack energy. The crack energy for generating 

a line crack of length 2a in an infinite two-dimen- 

sional anisotropic solid was derived by Sih and 

Liebowitz (1967), and it can be expressed as 

1 [ d l ] r [ O  0 0 ] [ ~ 1 1  

with 

& =  ( d + b ' • ) N +  ( d + N ) / ~ , ,  6 6 = r  (8) 

where az and /2~( i=  l, 2) are determined from the 

four roots ;5.2 = 21 -+ i~l and ra,4 = de2 ++- i/~2 of an 
algebraic equation given as 

S , , y 4 - 2 S , 6 y 3 ~ c  - (3S12+ 366) r2--2S26r + $22--0 
(9) 

For orthotropic crack systems in which the line 

crack is aligned with one plane of material sym- 

metries of orthotropic solids, two values 822 and 

66 in Eq. (7) or Eq. (8) can be expressed in 

terms of engineering constants as follows: 

__ E1 ,/2 E t  

The two values 62 and 66 can now be further 
simplified for the case of  isotropic solids as 

6 2 = 6 6 = 2  (11) 

The strain energy Va that can be stored in a 

damaged MVC may be given in general form as 

Vd= Vo+ Vc(when boundary traction is speci- 

fied) (12a) 

or  

Vd= V o - V c ( w h e n  boundary displacement is 
specified) (12b) 

depending on whether the traction or displace- 

ment is specified on the boundary of a damaged 

MVC, because the crack energies by specifying 

tractions and displacements are numerically equal 
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but diffi.~r in sign (Kassir and Sih, 1967). This is 

in agreement with a general result established by 

Spencer (1965) using Betti's reciprocal theorem. 

Using: the energies given by Eqs. (5) and (7), 

the strain energy Va that can be stored in a 

damaged MVC is obtained, from (12a), as fol- 

lows: 

[0"6 ) L~I6 ~26 

$20 (13) 

$66 (1 + S) &6D / S66 

(i, j - l ,  2, 6:no sum) 

where ~,~j are defined as 

e22=(~22, e66=~66066, and other eij=O (14) 

The parameters ~gj generally depend on the 

elastic compliance of the undamaged solid as well 

as on the crack orientation, since they are calcu- 

lated by assuming that the line crack is aligned 

with the: direction "1", one of local coordinates. 

In Eq. (13), D is a scalar variable defined as 

L)= ~ (15) 

In this paper, the scalar variable D will be 

considered as a new definition of a damage vari- 

able. This new scalar damage variable may be 

interpreted as the ratio of the effective damaged 

area (raft) to the total area of the characteristic 

region considered (z/?2), which differs somewhat 

from the classical damage variable D used in 

typical theories of continuum damage mechanics 

(e. g., Lemaitre, 1992). 

On the basis of SEEP, represented by Eq. ( l a ) ,  

we equate Eq. (6) to Eq. (13) in order to derive 

the effective continuum elastic compliance S-,j in 

a simple: form as 

S ~ - ~ ( I + ~ , ~ D ) ( i ,  j = l ,  2, 6;no sum) (16) 

Equation (16) implies that initially anisotropic 

solids show anisotropic behavior after they are 

damaged, while initially orthotropic solids (in 

which one plane of material symmetries is aligned 

Table 1 Effective continuum engineering constants 

for generalized plane stress problems, depen- 

ding on the type of material symmetry. 

Effective 
Effective 

engineering 
constraints 

Type of initially undamaged solids 

~7,2 

Anisotropic Orthotropic lsotropic 

/L E1 Ej E 

E2 E~ E 

Gl2 G G_I2 .... 
1 + s I + ~-66D 1 +D/(1 +u) 

~J2 P~2 ~t~ P 

P26 . . . . . . .  
~-:~6 1 + eT.~D 

with the line crack) and isotropic solids show 

orthotropic behaviors after damage. The effective 

engineering constants of ECM are derived from 

Eq. (16) and listed in Table I for initially 

anisotropic, orthotropic, and isotropic solids. 

2.2 E f f e c t i v e  c o n t i n u u m  e l a s t i c  s t i f f n e s s  

The strain energies contained in an un- 
damaged MVC of anisotropic solids and an 

ECM of damaged MVC, both of which are sub- 

ject to the same boundary strains e at the 

characteristic radius of R, may be written in terms 

of the reduced stiffness Q,~(i, j =  I, 2, 6) and 

the effective continuum elastic stiffness Qij, 

respectively, as 

Vo ::-~-~R2{ c} T E Q] {E} (I 7) 

I 2 T V~q==~-~R {e} [Q]{e} (18) 

where the reduced stiflness Qi~ are obtained 

from the stiffness C,~ for three-dimensional  solids 

as follows (Tsai, 1988): 

Q,.j=C~ C,3Cj3 (i, j = l ,  2, 6) (19) 
C33 

When strains are specified on the boundary of 

a damaged MVC, the strain energy 1/~ that can be 

stored in the damaged MVC may be obtained 
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from Eq. (12b) by using the same crack energy 

Vc given by Eq. (7). In this case, the stresses 

appearing in Eq. (7) should be replaced by the 

equivalent strains calculated from the stress 

-strain relations for undamaged anisotropic 

solids. This may result in 

l 2 T V d = T e r R  {e} [ Q ~ j ( 1 - e o D ) I { e }  

(i,  j = l ,  2, 6; no sum) (20) 

By equating Eq. (18) to Eq. (20) on the basis 

of SEEP, the effective continuum elastic stiffness 

Q~j are obtained as 

Q~j=Q~(1 -e ,~D)  (i, j = l ,  2, 6; no sum) 
(21) 

where the parameters el5 are listed in Table 2. It 
is proved from Table 2 that the parameters e~j for 

initially isotropic solids are identical to that given 

in Lee's damage theory for isotropic solids (Lee 

et al., 1997). 

T a b l e  2 Values of parameters eij depending on the 

type of material symmetry. 

Parameters Type of initially undamaged solids 

(e,~) Anisotropic Orthotropic lsotropic 

e n  

C22 

~'ta 

Q 12 C 
- - ' 0 2 2  ~" 22 
Qn 

2 
066 t~ 66 Q~2 

Q= S= ~ 22 
Q~ 

+ ~ $ 6 6  e 
'%/22 

Q 226 C' 
Q66 ~22 ~ 22 

+ Q~S~,~ 

Q22 $22 J22 

Q~oQ~ 
+ Q~ 

&6 ~ 66 

Q12Q26 &2 Jzz 
e16 016 

+ Q6~&6 g66 

Q22 &2 &2 
e26 

+ Q66&~ ~6~ 

[ - -  Jgl2 ~21 / 

E2-  
E1 e 22 

1 

1 

2 ~  2 
1 - v  2 

2 
1 - u z 

1 
l + v  

2 
1 -- ~2 

3 .  I d e n t i f i c a t i o n  o f  L o c a l  D a m a g e s  

In the preceding section, the elastic behavior of 

a damaged solid was represented by the effective 

continuum elastic compliance S-~ or stiffness ~)~. 

by modeling local damage as an equivalent ficti- 

tious line crack. In effect, a solid with embedded 

damage (equivalently, line cracks) is smeared 

smoothly into an equivalent continuum with 

elastic compliance S-o or stiffness Qij- By replac- 

ing all damaged local zones by their equivalent 

anisotropic continua, conventional methods may 

be employed for further stress and damage ana- 

lyses. This continuum approach seems useful only 

when the current state of local damage (i. e., 

damage size and damage growth direction) is 

known, as that information is required to calcu- 

late the effective continuum elastic properties. 

Unfortunately, in practice, it is perhaps impos- 

sible to identify the damage state in detail because 

the embedded local damage is inaccessible. 

Hence, it may require an innovative method by 

which the local damage state can be identified. 

Since local damage is modeled as an equivalent 

line crack, the identification of local damage is 

equivalent to identifying the current size and 

growth direction of a line crack. As the size of 

current local damage is measured by the damage 

variable D, which is determined by the damage 

evolution equation (see Eq. (25)), the present 

discussion will be confined to the identification of 

the current crack orientation (0) with respect to 

the global coordinates ( x - - y ) ,  as shown in Fig. 

2. Once the current crack orientation is identified, 

the corresponding damaged zone can be convert- 

ed to an effective continuum by using Eq. (16) or 

(21). Since the effective continuum elastic prop- 

erties are obtained from Eq. (16) or (21) with 

respect to the crack (local) coordinates (1-2), 

they should be transformed back to the global 

coordinates and used in the next step of an in- 

cremental calculation process. 

As can be seen from Table 1 and also from Fig. 

2 (c), the effective Young's modulus / ~  in the "1" 

direction of crack coordinates (1-2) does not 

change due to the presence of the line crack, but 
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I 

(a) Current state of a local (b) 
damage within a structure 

Fig. 2 

Equivalent line crack (c) Effective engineering constants 
representation for effective continuum model 

Identification of local damage 

the effective Young's modulus E2 in the "2" 

direction and the effective shear modulus G-~2 are 

reduced in magnitude by factors of (I + J,.iD) (i 
=2,  6). As stress analysis is typically conducted 

in the course of an incremental damage analysis, 

it may be desirable to use the current values of 

stresses and strains at a damaged local point to 

determine the crack orientation. Though there can 

be some alternate approaches to determine the 

crack orientation, an iterative approximate 

approach will be introduced herein. 

To determine the current crack orientation 0, 

assume that D (current damage variable) as well 

as a~ and ej (current stresses and strains with 

respect to the global coordinates) are known at a 

local damage. After estimating the crack orienta- 

tion with respect to the global coordinates, say 00, 

the coorclinate transformation is used to compute 

the stresses and strains with respect to the esti- 

mated crack coordinates, i. e., (~ and ej. The 

effective elastic moduli for the damaged state are 

then estimated from o'~ and ej as follows: 

, C;1 , (72 0"6 
E2 =~2-'  (22) E1 =~]-,  G * -  e6 

For undamaged state, the compliance Su with 

respect to the global coordinates is known in 

advance. Thus the compliance So with respect to 

the estimated crack coordinates can be readily 

computed from S~j by a coordinates transforma- 

tion. Using the compliance S,j, the parameters g22 

and ~-66, and the elastic moduli, Et, E2, and G~2 

for undamaged state can be computed. If the 

estimated crack orientation 00 is correct, then the 

following three relations from Table 1 may be 

satisfied: 

E* 1, E* 1 
Ea E2 = 1 + e 2 2 D  < 1, 

G*__ 1 < 1 (23) 
G12 1 + ~6,~D 

However, the estimated crack orientation 00 may 

not exactly satisfy all three relations in Eq. (23) 

at once. Hence, the best estimate of' ,9 may be 

found from an error minimizing approach as: 

Minimize f ( O ) = { \  E'E, -1)'~-~- (E2E* 

I + ~2zD G12 1 + g ~ D  

4. An Iterative Approach for Damage 
Analysis 

The scalar damage variable D defined by Eq. 

(15) is identical to that defined in LDT. Thus, the 

damage evolution equation in LDT can be used 

in damage analysis (Lee et al., 1997): 

D = ~D (~176 g u l l  (aeq - avH) (25) 

where ~7 is a material constant, N ~s a parame- 

ter defined in Paris's crack growth law (1963), 

aeq is the von Mises equivalent stress, o'ru is a 

threshold stress above which damage will grow, 

and I t  is the Heaviside step function, in Eq. (25), 

6 represents the so-called damage equivalence 

stress defined by Lemaitre (1992). 

In the previous sections, current values of the 

damage variable, stresses, and strains at local 

damage are assumed available in order to identify 
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the current orientation of a fictitious line crack. 

As the current stresses and strains should be 

consistent with the current effective continuum 

elastic properties, an iterative numerical approach 

is considered herein to enforce this consistency 

condition at each end of time increment during a 

damage analysis. It may be summarized as fol- 

lows: 

(1) Use the data of the previous damage state 

(i. e., effective continuum elastic properties and 

damage variable at the previous time step) to 

predict current (local) stresses and strains with 

respect to global coordinates by using a conven- 

tional stress analysis method . 

(2) Use the damage identification procedure of 

Section 3 to predict the current crack orientation 

0 with respect to global coordinates. 

(3) in parallel with step 2, the damage evolu- 

tion equation is solved to predict the current 

damage variable by using the stresses and strains 

predicted in step l and previous damage variable. 

(4) Predict current effective continuum elastic 

properties, from Eq. (16) or (21), with respect to 

the crack coordinates predicted in step 2. Use the 

coordinate transformation to calculate current 

effective continuum elastic properties with respect 

to global coordinates. 

(5) Replace the previous damage state with the 

predicted current damage state, and then repeat 

the above procedures to obtain improved predic- 

tions of the current damage state. 

(6) After sufficient convergence of predicted 

current damage state, go back to the step 1 with a 

time increment for next iteration. 

Though a specific iterative numerical approach 

is introduced herein, there should be undoubtedly 

other alternate numerical approaches to predict 

the current damage state in consistent ways. 

5. Conclusions 

As anisotropic materials such as composite 

materials are increasingly being used for struc- 

tural applications, a theory of continuum damage 

mechanics for anisotropic solids is introduced by 

using the crack energy from fracture mechanics. 

The material behavior of damaged solids is 

modeled by the effective continuum elastic prop- 

erties, into which local damage is smoothly 

smeared, by using two major concepts: the strain 

energy equivalence principle and the equivalent 

line crack representation of a local damage. We 

benefit from these concepts, in that current local 

damage state can be identified from the local 

stresses and strains available in the course of 

damage analysis. Thus, combining the damage 

modeling process with the damage identification 

process may provide a simple, unified, and yet 

powerful continuum approach to predict failures 

of structural and mechanical components. 
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